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Abstract
While much current web privacy research focuses on browser
fingerprinting, the boring fact is that the majority of cur-
rent third-party web tracking is conducted using traditional,
persistent-state identifiers. One possible explanation for the
privacy community’s focus on fingerprinting is that to date
browsers have faced a lose-lose dilemma when dealing
with third-party stateful identifiers: block state in third-party
frames and break a significant number of webpages, or allow
state in third-party frames and enable pervasive tracking. The
alternative, middle-ground solutions that have been deployed
all trade privacy for compatibility, rely on manually curated
lists, or depend on the user to manage state and state-access
themselves.

This work furthers privacy on the web by presenting a
novel system for managing the lifetime of third-party storage,
“page-length storage”. We compare page-length storage to ex-
isting approaches for managing third-party state and find that
page-length storage has the privacy protections of the most
restrictive current option (i.e., blocking third-party storage)
but web-compatibility properties mostly similar to the least
restrictive option (i.e., allowing all third-party storage). This
work further compares page-length storage to an alternative
third-party storage partitioning scheme inspired by elements
of Safari’s tracking protections and finds that page-length stor-
age provides superior privacy protections with comparable
web-compatibility.

We provide a dataset of the privacy and compatibility be-
haviors observed when applying the compared third-party
storage strategies on a crawl of the Tranco 1k and the quan-
titative metrics used to demonstrate that page-length storage
matches or surpasses existing approaches. Finally, we provide
an open-source implementation of our page-length storage
approach, implemented as patches against Chromium.

1 Introduction

Web trackers use a variety of techniques to track and vio-
late privacy on the web. Tracking is usually done through a

mix of stateful tracking (i.e., storing and transmitting unique
identifiers in the browser) and stateless tracking, or finger-
printing (i.e., attempting to uniquely identify a browser based
on unique configuration and execution environment charac-
teristics).

Though much recent privacy work has focused on stateless,
fingerprinting-based tracking, we expect that the majority
of tracking is still done using traditional stateful methods.
This intuition is based on multiple factors, such as adtech
uproar over Google’s recent announcement [2] to stop sending
cookies (only one of many ways of storing identifiers) to
third-parties in the future, prior research demonstrating the
popularity of storage-based tracking [22, 24, 41, 42, 49, 52],
and expert insight from browser developers.

While the privacy community has had some success in
designing defenses to stateless, fingerprinting tracking that
protect users without breaking benign, user-serving page func-
tionality [31,37], researchers, industry and activists have been
less successful in designing practical, robust defenses against
webscale stateful third-party tracking.

Despite the press and attention that the “end of third-party
cookies” has received, blocking third-party cookies (i.e., not
sending cookies on requests for third-party sub-resources)
does not provide any fundamental protections against stateful
third-party tracking. Blocking third-party cookies is a posi-
tive step for web privacy, but because it prevents categories
of accidental tracking or information disclosure, not because
it prevents intentional tracking. Third-party frames can ac-
cess the same cookies1, localStorage2, indexDB3, or other
JavaScript accessible storage methods (sometimes collectively
called "DOM Storage"). In short, blocking third-party cook-
ies is a necessary, but insufficient part of solving the general

1For completeness, we note that this isn’t completely true, and that
HttpOnly cookies cannot be accessed from JavaScript. But since HttpOnly
doesn’t provide protection against intentional tracking (since such track-
ers could just omit the HttpOnly instruction), we don’t consider HttpOnly
further in this work, and omit it from further discussion for concision.

2https://html.spec.whatwg.org/multipage/webstorage.html#
the-localstorage-attribute

3https://www.w3.org/TR/IndexedDB-2/
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problem of preventing stateful third-party tracking.
Though some browser vendors have taken some steps to

address third-party stateful tracking, each approach has sig-
nificant shortcomings and limitations. The details of each
technique are described in Section 2.3, but at a high level,
deployed approaches are incomplete and insufficient, either
because they depend on curated lists and heuristics (i.e., Fire-
fox and Edge), address tracking across sites but not time (i.e.,
Safari), defer the question to non-expert users (i.e., Storage
Access API4), or provide strong protections against tracking
but break sites for users (i.e., Brave).

We argue that practical, robust protections against stateful,
third-party tracking should have at least three properties.

1. Cross-site protection: prevent third-parties from using
stored identifiers to link browsing behavior across first-
party sites.

2. Cross-time protection: prevent third-parties from using
stored identifiers to link browsing behavior on the same
first-party site across time.

3. Web Compatibility: not effect, or minimally impact,
user-serving, non-privacy harming behavior in third-
party frames.

In this work we aim to improve web privacy by presenting a
new method of managing and limiting third-party state that we
call “page-length storage”. Section 3.1 presents the approach
in detail, but at a high level, “page-length storage” is the
unique combination of two features:

1. page-length storage partitions third-party state by the
top level document. If a browser tab has loaded a page
from origin A, and that page includes two sub-documents
(i.e., <iframe>s) from origin B, the two sub-documents
see the same storage, but different storage than B sees
when B is the top-level document, and also different
storage than origin B sub-documents on other pages and
tabs.

2. page-length storage sets the lifetime of all third-parties
state to be equal to the lifetime of the top level document.
If a page from origin A opens and closes <iframe>s
from origin B, all of those origin B frames see the same
storage, even between frames being opened and closed.
However, once the top-level page is closed, all the par-
titioned storage for B is cleared as well. Revisiting or
reloading the top-level page will result in the B frames
seeing empty storage.

Contributions. More concretely, this work makes the fol-
lowing contributions to improving privacy on the web.

4https://developer.mozilla.org/en-US/docs/Web/API/
Storage_Access_API

1. The design of page-length storage, a novel approach to
managing third-party state in web pages that provides
strong privacy protections without breaking websites.

2. New, general metrics for measuring the privacy and
web-compatibility properties of third-party storage poli-
cies.

3. An open-source, prototype implementation of page-
length storage as a set of patches to Chromium [13].

4. A public dataset of applying four storage policies to
the Tranco 1k [43], a research-focused ranking of pop-
ular sites. Our dataset [13] includes the above privacy
and compatibility metrics generated from four policies,
each approximating a third-party storage policy currently
deployed in a popular browser.

2 Background & Motivation

Modern browser technologies and the security policies that
govern them are complex, so we must clearly define our terms
and provide essential background on browser storage policy,
user tracking techniques, and the state of the art in tracking
countermeasures.

2.1 Same-Origin Policy & Storage Basics

Sites & Origins. Browsers isolate storage (e.g., cookies,
localStorage, indexDB) according to the Same-Origin Pol-
icy (SOP) [11]. The SOP has grown complex, multifaceted,
and inconsistent [46], and applies to many aspects of the web;
here we describe only its most basic and universal elements,
particularly as they relate to storage. An origin comprises
a scheme (e.g., https), a complete DNS hostname, and an
optional TCP port number. All state-impacting activities in
a browser are associated with an origin derived from some
relevant URL. For example, a script’s execution origin is de-
rived from the URL of the frame in which the script executes,
and an HTTP request origin is derived from the URL being
fetched.

Many activities are restricted to same-origin boundaries.
For example, a script executing in origin A cannot access
cookies stored for origin B. This is true even when a sub-
document from origin B is embedded in a page from origin A.
Storage is strictly isolated according to SOP: scripts can ac-
cess cookies and DOM storage (e.g., localStorage) only for
their execution origin, and HTTP requests store and transmit
cookies only for their destination origin.

First and Third Parties. We now define two terms used
through the rest of this paper, first-party and third-party. These
terms are not unique to this work, but are frequently used to
mean similar but not-quite-the-same things in research and
web standards, so we define their use in this work explicitly.
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Figure 1: Third-party storage (a) fully allowed, (b) fully blocked, (c) partitioned by first-party context, and (d) scoped to hosting
page life time (our proposal). A, B, & T are distinct domains; T is embedded as a third-party within A & B.

When loading a website, the first-party is the “site” por-
tion of the top level document. This is the eTLD+1 of the URL
shown in the navigation bar of the browser. Any sub-resources
or sub-documents included in the page are considered first-
party if they’re fetched from the same eTLD+1 as the top
level document. Third-parties, then, are any site not equal
to the top-level document. A sub-document (i.e., <iframe>)
is considered third-party if it is fetched from any origin not-
equal to the top-level document, a script is third-party if it
was fetched from a site different than the top level document,
and so forth.

Finally, we note that when applying SOP to the web, what
determines storage access is the “site” of the frame including a
script, not the script itself. So if a page from origin A includes
a script loaded from origin B, the script is third-party, but has
access to the first-party storage. What storage area a script
has access to is determined by the “site” of the page, not the
“site” of the script.

2.2 User Tracking

Types of Behaviors Tracked. This work uses the term
“tracking” to refer to a third-party re-identifying a visitor
across visits to first-party sites. Unless otherwise specified,
we use “tracking” to refer both to cross-site tracking (i.e.,
a third-party can link an individual’s behavior across first-
parties) and cross-time tracking (i.e., a third-party can iden-
tify the same person returning to the same first-party across
sessions).

Stateful Tracking. The oldest, simplest and most common
form of online tracking is “stateful” tracking, where a third-
party stores a unique value on the user’s browser, and reads
that value back across different first-parties. While the terms
explicit and inferred used by Roesner et al. [45] appear
more precise, as both techniques involve state of some kind,
the stateful/stateless terminology popularized by Mayer and
Mitchell [35] appears dominant in subsequent research.

In the simplest case, stateful tracking works as follows.
Sites A and B both include an iframe embedding site C. When
the embedded site C is loaded, it looks to see if a unique
identifier has been set, and if not it generates and stores one,
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using any of the storage methods provided by the browser
(cookies, localStorage, indexDB, etc). Embedded site C
then checks to see what site’s its being embedded in, and
sends a message back to site C, recording that the same user
visited both sites A and B.

Stateful tracking, at root, relies on a site being able to access
persistent state in different contexts, and using the persistently
stored state to link (conceptually) unrelated behavior. To build
on the previous example, site C is able to track the user across
A and B because C seems the same storage values when
embedded in sites A and B, even though site A might not
have any direct relationship with site B.

As we will discuss at length later, approaches for prevent-
ing stateful tracking involve either preventing third-parties
from storing values, proving third-party different stored val-
ues when embedded in different contexts, or combinations of
the two.

Other Tracking Techniques. While stateful tracking is the
simplest, and likely the most common, method for tracking
users online, there are other ways third-parties track users.
While this work focuses on stateful tracking, in this subsection
we briefly discuss these other, non-stateful techniques here
for completeness:

• Browser fingerprinting refers to uniquely identifying a
browser (or browser user) not through the storage and
transmission of a unique identifier, but by identifying
unique characteristics of the browser’s configuration
(e.g., plugins, preferred language, “dark mode”) and ex-
ecution environment (e.g., operating system, hardware
capabilities).

• Server-side tracking is a broad term that loosely means
tracking users across sites not through stored identifiers
(i.e., stateful tracking) or unique configuration (i.e., fin-
gerprinting), but through information the user provides
to the site. For example if a user uses the same email
address when registering on two different sites, a tracker
could later use the repeated email address to link the
users behavior across sites.

2.2.1 Focus on Stateful Tracking

This work presents a novel solution for preventing stateful
cross-site and cross-time tracking. We aim to improve pro-
tections against stateful tracking because we think its where
browsers are most lacking practical, robust, comptable de-
fenses. While significant research has gone into building web-
compatible defenses against stateless tracking (e.g., [31, 37]),
the existing techniques for preventing stateful third-party
tracking are either incomplete (i.e., they still allow signifi-
cant privacy harm to occur) or incompatible (i.e., they break
a significant number of websites).

2.3 Deployed Stateful Tracking Defenses
Real-world countermeasures currently deployed in produc-
tion browsers illustrate a range of possible tradeoffs between
privacy and compatibility. We rely heavily on the community-
curated Cookie Status project [3] for up to date policy imple-
mentation details.

Brave: Block all Third-Party State. Brave [16], a
Chromium fork featuring aggressive privacy protections
called “Shields”, defaults to blocking all forms of third-
party storage. The officially correct way to block persistent
third-party storage involves raising a JavaScript exception
on script access to blocked storage APIs [10]. Few sites
are prepared to handle these exceptions, however, and Brave
improves compatibility by instead simply turning blocked
third-party storage API accesses into no-ops. Brave also uses
a whitelist to allow a small number of high-profile third-
parties to use persistent storage in the context of specific
first-party sites (e.g., googleusercontent.com when embed-
ded from google.com) [7]. Brave’s approach results in strong
privacy protections at the cost of a higher incidence of site
breakage, which may require users to selectively lower its
Shields on incompatible sites.

Safari: Partition Third-Party State. Apple Safari [15] fea-
tures Intelligent Tracking Prevention (ITP), a combination of
storage restriction policies, opt-in APIs, and on-client classi-
fication of tracking domains via machine-learning [12]. Sa-
fari never transmits cookies on third-party HTTP requests.
Cookie and localStorage access in third-party frames are
partitioned on first-party site identity to prevent stateful lateral
tracking (as in Figure 1c). Safari provides developers with
a requestStorageAccess API to request user permission
to access unpartitioned third-party storage across first-party
contexts. This opt-in approach allows users to accept the po-
tential for lateral tracking in exchange for useful functionality
such as cross-site login state.

Safari features a number of additional policies and heuris-
tics to restrict the lifetime of items stored by domains ITP
has classified as probable trackers. These restrictions im-
pact but do not categorically eliminate potential for longi-
tudinal tracking by third-parties. The Safari ITP approach
provides strong cross-site tracking protections while avoiding
full-blocking with its associated site breakage, but it does
not eliminate across-time tracking by third-parties, and the
non-deterministic impact of machine-learning on its policy
enforcement can make it challenging for web developers to
reason about.

Firefox and Edge: Restrict Known Bad Actors. Mozilla
Firefox [6] has adopted a selective storage policy that depends
on the Disconnect [8] list of curated tracking domains. In
general, third-party origins not found in the Disconnect list are
granted unrestricted access third-party storage. Third-party
origins classified as trackers by Disconnect are given access to
third-party storage on the first five first-party sites embedding
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that third-party origin. Subsequent additional sites embedding
that third-party origin will result in user opt-in prompts to
allow third-party storage which must be accepted to allow use
of third-party storage by that origin on that first-party site.

Exceptions to these restrictions are made for first-party
domains identified by the Disconnect list as related to specific
third-party origins (e.g., googleusercontent.com embedded
on google.com). The Firefox approach is one of compromise:
well-known tracking domains face restrictions on the reach
of their lateral tracking, but protection depends heavily on the
validity and coverage of the underlying filter list.

Microsoft Edge [4] has begun to deploy filter list-based stor-
age restrictions similar to those performed by Firefox, with
all the benefits and drawbacks of this compromise approach
summarized above.

Chrome: Unrestricted Third-Party State. Google
Chrome [9], in contrast to all of the above, permits full third-
party storage use, including sending cookies on HTTP re-
quests to third-party resources. Google has announced inten-
tions to phase out third-party cookie support [2] in the near
future; technical details remain vague, but their wording im-
plies eliminating only cookies on third-party HTTP requests,
not restricting third-party storage in general. Chrome domi-
nates as the world’s most popular browser for both desktop
and mobile markets [1], understandably prompting web devel-
opers to target its behavior for maximum compatibility, and
indirectly perpetuating the status quo of stateful tracking in
the process.

2.4 Compatibility and Tracking Protections

Finally, we present some ways that existing protections
against third-party stateful tracking break websites. We
present these as moderating examples, and useful constraints,
in designing page-length storage. Without considering these
compatibility concerns, solutions will tend to simplistic,
“block-everything” approaches that end up not being useful,
and so not being effective in protecting privacy.

We gather the following examples from Brave’s public is-
sue tracker5. We pull from Brave’s breakage reports since
Brave has the most aggressive restrictions on third-party
storage of the surveyed browsers, and so the largest num-
ber of storage-related compatibility problems. Nevertheless,
we present these as examples of the kinds of compatibility
problems that third-party storage protections can cause.

2.4.1 Uncaught Exceptions from Blocking Storage

Strict third-party storage blocking breaks embed-
ded SlideShare slide show widgets (e.g., https:
//support.blogactiv.eu/2015/04/24/how-to-embed-
slideshare/) on Chrome. The widget becomes inert, not

5https://github.com/brave/brave-browser/issues

Figure 2: Stock market graph broken by strict third-party
storage blocking (left) and working with page-length storage
(right).

responding to clicks, when Chrome’s implementation of strict
third-party storage blocking (correctly, per the specification)
raises JavaScript exceptions on access to storage APIs.
Brave’s silent no-op implementation of strict third-party
storage blocking is sufficient to prevent breakage in this
case; successful storage access is clearly not essential to this
widget’s functionality.

A similar example is provided by a data plot widget
broken by strict third-party storage blocking (e.g., https:
//www.otcmarkets.com/stock/NSRGY/overview). Once
again, strict third-party storage blocking causes a JavaScript
run-time error which results in a blank data plot (see Figure 2).
In this case, Brave’s silent no-op blocking does not help: the
error is caused by property access on a null value returned
from a no-op API stub.

2.4.2 Breaking Cookie-Based Third-Party Sessions

A server-side example of strict third-party storage blocking
causing breakage is provided by a live code editing/running
widget embedded in the R language documentation (e.g.,
https://www.rdocumentation.org/packages/grid/
versions/3.6.2/topics/grid.plot.and.legend). The
embedded widget tries to establish a cookie-based session
with third-party domain multiplexer-prod.datacamp.com.
Failure to persist third-party cookies results in HTTP 403
errors on subsequent HTTP requests, preventing code
execution and output display.

A broken video player on a popular commen-
tary and analysis site provides another example
(https://fivethirtyeight.com/videos/do-you-buy-
that-biden-should-pick-a-running-mate-from-a-
swing-state/). With third-party storage blocked, the video
player remains blank indefinitely. In this case, the video
player functionality is broken because the frame attempts to
use localStorage to persist values across pages.
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3 Design & Implementation

We propose and prototype a novel browser storage policy that
prevents both cross-site and cross-time stateful tracking while
measurably improving site compatibility over traditional third-
party storage blocking. Page-length storage prevents stateful
third-party tracking while minimizing site breakage by mak-
ing third-party storage fully functional within a strictly iso-
lated, ephemeral scope. We also provide a brief overview of
how we developed and tested our page-length storage proto-
type within a Chromium-based browser.

3.1 Policy Design

The key insight behind page-length storage is that site break-
age can be minimized without compromising privacy by mak-
ing all interactions with third-party storage behave normally
(i.e., permissively), but only within the isolated, ephemeral
scope of the containing page’s lifespan. The containing page
is the top-level frame, loaded from the URL displayed in the
browser’s navigation UI (e.g., address bar). Its lifespan ex-
pands from the moment the top-level frame committed to
loading that document URL to the moment any navigation
event (including even reloads of the same URL) discards the
contents of the top-level frame.

Within the isolated, ephemeral scope of each top-level
page object’s lifespan, third-party storage access behaves nor-
mally for both scripts executing in third-party <iframe>s and
HTTP requests to third-party domains. SOP enforcement is
unchanged. All storage behaves in the traditional, permissive
way with one exception: third-party storage starts out empty
and is discarded along with the top-level page object on top-
frame navigation. Any site embedding third-party content
which functions correctly under permissive policy for first-
time visitors with empty cookie jars should function correctly
under page-length storage policy.

Isolating third-party storage to single page lifespans pro-
vides a good tracking vs. compatibility compromise. Page-
length storage prevents stateful cross-site and cross-time track-
ing automatically, as third-parties cannot “remember” any-
thing past top-level page (re-)loads. Compare Figures 1a and
1d. As a practical matter, third-party content cannot silently
manipulate top-level page navigation, so it cannot test whether
third-party storage will persist beyond top-level navigations.
All tests that can be done silently within the scope of a single
page’s lifespan will appear fully functional, as for a first-time
visitor with uninitialized third-party storage.

Some hypothetical examples illustrate the impact of this
approach.

First, consider two <iframe>s from the same third-party
embedded on a single page document: these will share the
same ephemeral third-party storage partition and so can use all
forms of third-party storage, via both script access and HTTP
cookies, to communicate with each other and the remote third-

party origin for the duration of the embedding page’s lifespan.
Second, consider a third-party <iframe> embedded on a

page that is loaded on two different tabs simultaneously: each
instance of the frame is using its parent-page’s ephemeral
third-party storage partition, so no cross-site stateful shar-
ing/communicating is possible between them.

Third, consider a third-party <iframe> embedded on a
page that is loaded and then reloaded in the same tab: each
page load (regardless of URL) discards the previous page’s
ephemeral third-party storage partition, so no cross-time state-
ful sharing/communicating is possible.

Finally, consider a third-party <iframe> embedded in two
pages hosted on different first-party domains: whether these
pages are loaded sequentially in one tab, or simultaneously in
two tabs, each third-party frame is using its own parent-page’s
ephemeral third-party storage partition, so again no cross-site
stateful sharing/communicating is possible.

3.2 Prototype Implementation

We implement our page-length storage prototype as a set
of patches to Brave 1.12.48 (based on Chromium 83). We
use Brave, and version 1.12.48 specifically, in order to use
the latest revision of PageGraph for data collection, per Sec-
tion 4.1.4. However, our patches are completely independent
of PageGraph’s patches and can be built without them present.
The most relevant change from stock Chromium provided by
Brave is its gentler approach to third-party storage blocking,
which it enables by default. Instead of raising a JavaScript
exception on script access to blocked storage (per the speci-
fication), Brave makes the access a silent no-op, returning a
null value.

Chromium’s standard architecture includes content and
storage isolation mechanisms relevant to our design goals. In
addition to classic SOP enforcement, Chrome isolates con-
tent rendering and JavaScript execution into separate render
processes partitioned on a same-site basis (see Section 2.1).
Each render process uses one storage partition, which can
be persistent (the default) or ephemeral (private mode), and
which can additionally be partitioned by arbitrary identifiers
(for Chrome apps and extensions). HTTP traffic is managed
by a dedicating networking process, which chooses a storage
partition for HTTP cookies based on the frame initiating the
request.

We exploit this existing site storage isolation framework to
prototype page-length storage with minimal changes to the
browser. Our classification of frames and requests as third-
party reuses the same-site logic already in Chromium and
is always relative to the top-level page URL (not <iframe>
URLs). Each time a tab’s top-level frame loads a page URL,
we generate and store a UUID identifying that load event (the
load key). When third-party frames are subsequently created
and assigned to separate render processes, we augment the
third-party site identifier with the top-level frame’s current
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load key to enforce page-level isolation between ephemeral
third-party storage partitions. HTTP requests to third-parties
are bound to the associated ephemeral third-party storage
partition, which is created on demand if necessary. The result
is unchanged first-party storage behavior, and fully functional
third-party storage that lives only as long as the containing
page document, as in Figure 1d.

3.3 Implementation Remarks
The changes required to prototype page-length storage proved
deceptively small. A total of 276 lines of C++ were added,
changed, or removed by our patches. The scale of these
patches, small relative to the millions of source code lines
of Chromium, belie the challenge of finding the right places
to patch. Most changes relating to storage partition creation
and isolation were confined to the main “browser” process
in Chromium’s multi-process architecture, which has access
to the entire frame tree for each tab, and were thus relatively
straightforward to implement. Binding third-party HTTP re-
quests to isolated, ephemeral storage partitions on demand,
however, crossed process boundaries into the network process,
which does not have access to frame tree context information,
and required additional IPC messaging and timing concerns.

The implementation demonstrated correctness and ro-
bustness fully sufficient for prototype testing. The avail-
able Chromium unit tests all passed, except for a few
implementation-specific assertions we expected to fail af-
ter our changes. Manual testing of multiple scenarios like
the examples from Section 3.1, included nested third-party
<iframe>s, showed expected behavior in all cases. Further-
more, the prototype’s error rate during automated crawls were
favorably comparable to stock permissive policy (see Sec-
tion 5.1).

Prototype performance proved adequate despite not being
a design priority. Because performance was not a design pri-
ority for the prototype, we did not perform any benchmarks.
In theory, our approach should reduce performance over stock
Chromium: it can produce more render processes, can in-
volve more I/O operations creating temporary directories,
and definitely invokes additional IPC overhead between net-
work and render processes. However, both manual testing and
automated crawling with the prototype revealed no obvious
performance degradation. Furthermore, none of these issues
are inherent in the policy itself, and there is no reason to be-
lieve a performance-tuned production implementation would
produce any significant overhead compared to traditional poli-
cies.

4 Methodology

We evaluate our proposed policy by comparing its tracking
and compatibility performance against alternative policies
during automated, stateful crawls of popular web sites.

4.1 Crawl Methodology
Here we describe our data collection procedure in sufficient
detail to permit straightforward experiment reproduction.

4.1.1 Target URLs

We generated a seed list of URLs to visit in parallel using a
stateless pilot crawl of the Tranco 1k sites [43]. To achieve
depth and representative sampling of web content, we must
explore more than just the “landing page” of each site. But
each of our 8 parallel crawls must visit the same sequence
of page URLs to produce comparable results. Coordinating
the link spidering and selection process across parallel crawls
introduces needless engineering complexity. Our solution was
to perform a stateless pilot crawl using stock Brave to visit the
Tranco 1k sites’ landing pages and spider three links deep into
the site structure. This approach, using Tranco list snapshot
JZZY, produced 3,419 total deduplicated page URLs to visit.

4.1.2 Policy Variants

We collect data using four distinct policy variants:

• Permissive: Allows all forms of third-party storage, as
per Figure 1a. Stock Chrome behavior. Presumed to
cause no breakage.

• Strict third-party storage blocking: Blocks all forms
of third-party storage, as per Figure 1b. Treats access as
no-op. Presumed to cause the most breakage.

• Site-keyed: Partitions persistent third-party storage by
first-party eTLD+1, as per Figure 1c. Alternative to our
proposed policy, inspired by elements of Safari ITP.

• Page-length: Isolates third-party storage in ephemeral,
per-page partitions, as per Figure 1d. Our proposed pol-
icy.

4.1.3 Crawl Execution

We executed our stateful crawls in parallel across all stor-
age policies without any simulated user interactions. We
deployed two instances of each tested policy to verify be-
havioral consistency and provide similarity-score baselines
(see Section 4.2.3). The crawlers maintained independent,
persistent user profiles for each policy instance to maintain
realistic state across all sequential page visits. The full exper-
iment included 2 iterations crawling the master URL list to
provide data on cross-time tracking across repeat visits. All
crawls were performed in parallel and simultaneously (but
without active synchronization between profiles) from a sin-
gle network vantage point. Each page visit was performed in
a freshly launched, non-headless (i.e., rendering to the Xvfb
headless display server) browser instance. Navigation was
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allowed to time out after 30 seconds. Assuming no naviga-
tion timeout, our crawlers waited for 30 seconds after the
DOMcontentloaded event (i.e., main document fetched and
parsed but subresources not fully loaded yet) before tearing
down the browser instance. No simulated user interactions
were attempted.

4.1.4 PageGraph Instrumentation

We use PageGraph, an instrumentation system built into an ex-
perimental branch of Brave, to record internal page behaviors.
PageGraph patches the V8 JS engine and the Blink HTML ren-
dering engine to capture and annotate a graph of each HTML
document’s DOM structure and the events that constructed
and modified it. Nodes represent entities such as DOM el-
ements, scripts, HTTP resources, storage mechanisms, and
a selective subset of builtin and DOM-provided JavaScript
APIs. Edges represent relationships between nodes such as
DOM structures and script interactions with DOM elements,
DOM events, JavaScript APIs, and HTTP requests. The set
of non-structural edges in each of these graphs constitute the
dynamic behaviors of the originating page. Behavioral-edge-
set similarity can be quantified using Jaccard index scores to
provide a useful proxy for behavioral compatibility among
compared storage policies.

4.2 Evaluation Methodology
We evaluate our proposed policy’s privacy and compatibil-
ity performance using full-scale quantitative stateful tracking
metrics, full-scale quantitative site behavior similarity metrics,
and randomly-sampled qualitative assessment of site break-
age.

4.2.1 Preliminary Data Filtering

We focus our analysis on frames of interest: i.e., third-party
frames not flagged as advertisements. Our classification of
third-party vs. first-party frames is based on eTLD+1 matches
derived from the Public Suffix List [14]. Frames loaded from
the same eTLD+1 as the main page URL are first-party
frames; all others are third-party frames. We eliminate from
consideration all first-party frames and third-party frames
flagged as advertising content by the community-maintained
EasyList [5]. This filtering eliminates noise from our evalua-
tion: first-party storage is not affected by our policy change,
and we are unconcerned about breakage of known advertising
content.

4.2.2 Quantitative Privacy Assessments

Tracking Potential. The central metric we use to quantify
potential for stateful cross-site and cross-time tracking by
third-parties is the potentially identifying cookie flow (PICF).

A cookie flow is the combination of an HTTP cookie and
a third-party eTLD+1 receiving that cookie. We consider
cookie flows potentially identifying when the cookie values
meet a tunable minimum size threshold and are unique to
a single browser profile during our stateful crawls. There
are other forms of third-party storage available, and other
channels by which identifying tokens can be transmitted to
third-parties. But we use cookies as a representative measure
of stateful tracking because they are unambiguous in structure,
ubiquitous as tracking IDs, and essentially unrestricted by
stock Chrome, our baseline. (Both our page-length storage
and site-keyed implementations apply their storage policies
to all forms of third-party storage, not just cookies.)

Cross-Site Tracking. Identical PICFs seen across multiple
distinct top-level sites visited represent potential for cross-site
tracking by the associated third-party domain. We aggregate
cross-site PICFs to count the total number of top-level sites
across which each distinct third-party domain seen could have
tracked our crawler profiles, giving us summary scores of
“cross-site trackability” by which to compare all our storage
policies. These scores can be visualized using cumulative sum
curves, as shown in Section 5.2.

Cross-Time Tracking. PICFs seen on a given top-level site
across multiple pages/crawls represent potential for cross-
time, or visit-to-visit, tracking by a given third-party domain.
We aggregate cross-time PICFs to count the total number of
third-party domains which could have tracked our crawler pro-
files for each distinct top-level site domain visited, giving us
summary scores of “cross-time trackability” by which to com-
pare all our storage policies. These scores can be visualized
using cumulative sum curves, as shown in Section 5.3.

4.2.3 Quantitative Compatibility Assessment

We assess site compatibility across storage policies using a
quantifiable proxy measure: similarity of internal page be-
haviors as reported by PageGraph. Our insight is to presume
no storage-based breakage for permissive profiles and some
unknown (but non-zero) amount of breakage on strict third-
party storage blocking profiles. If alternative policy (e.g.,
page-length storage) profiles produce content behaviors more
similar to the permissive baseline than do the strict third-
party storage blocking profiles, then the alternate policy is
less likely than strict third-party storage blocking to cause
breakage.

We model and compare content behaviors using the set
of non-structural (i.e., action or event) edges in PageGraph
representations of relevant frames. Similarity between edge
sets can be measured using the Jaccard index: J(A,B) = |A∩B|

|A∪B| .
Index scores range from 0 (no intersection) to 1 (equality).
We consider the score undefined when both sets were empty.

We compare content behaviors across identical frames
loaded on identical pages across all tested policies. Frames
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and pages are identified and matched by full URL. The simi-
larity score of the two permissive profiles provides the compat-
ibility baseline: the presumed best-possible similarity score
for that frame/page instance. The other profiles are each com-
pared with a single permissive profile to provide similarity
scores to compare against the baseline. The cumulative sum
of all frame/page instance similarity scores for each profile
can be visualized to show which policies track closest to the
baseline across all visited pages (see Section 5.4).

We optimized the set of PageGraph node types included in
our behavioral sets to maximize the distance between strict
third-party storage blocking policy scores and the permis-
sive baseline score. Our intuition is that the baseline score
provides a threshold of “reasonable” behavioral differences
between two different instances of the same content loaded in
different browsers at about the same time. The farther away
from this baseline a policy scores, the greater the likelihood
of unreasonable, or breaking, differences in behavior.

We identified 11 PageGraph node types relevant to behav-
ioral analysis, a set small enough to be amenable to brute force
optimization across its power set. Optimization relied on a
random sample of 100 frame/site instances extracted from a
preliminary full-scale crawl dataset, whose unoptimized simi-
larity curves matched those of the entire data set, indicating
a representative sampling. On this data subset we tested the
strict third-party storage blocking separation from the per-
missive baseline for every subset of relevant PageGraph node
types. The results confirmed our intuition that the least helpful
node types were structural elements like HTML elements and
DOM text blocks; less intuitively, they also showed that Page-
Graph’s set of instrumented DOM manipulation JavaScript
APIs was similarly unhelpful. The final optimial node type set
comprised scripts and PageGraph’s selected JavaScript builtin
APIs (e.g., date functions), HTTP resources, frame structures
(DOM roots and frame-owning elements), and storage mech-
anisms (cookie jars, local and session storage buckets). Only
edges (i.e., behaviors) linking these node types are included
in the behavior similarity results presented in Section 5.4.

4.2.4 Qualitative Compatibility Assessment

We augment our quantitative proxy assessment of site compat-
ibility with blinded multi-grader manual analysis for breakage
within a random sample of sites loading popular third-party
content. Our methodology is heavily inspired by a similar
experiment by Snyder et al. [48].

To select our set of URLs to test, we first identified the
most popular third-party, non-ad-blocked frame URLs within
our crawl dataset. We sorted these by the harmonic mean of
the number of pages embedding that frame and the number
of third-party cookies set for the frame’s eTLD+1. This met-
ric is higher for frames which appear on a large number of
sites and have access to a large number of cookies: prime
candidates for testing third-party storage policy changes. We

selected the top 10 frame URLs with distinct eTLD+1s, to
have higher content diversity. We further filtered out frames
which appeared only on non-English sites (e.g., frames from
baidu.com and alicdn.com), and frames which did not have a
content type of either HTML or JavaScript (e.g., frames from
sharethis.com with a content type of image).

For each of the 10 selected frame URLs, we randomly se-
lected 5 candidate page URLs observed to embed that frame
URL during our crawls, giving us 50 candidate URLs for man-
ual analysis. Upon closer inspection of the frame contents,
some frames did not have any real estate on the page and sim-
ply contained JS script, which would interact or render with
DOM elements elsewhere on the containing site. With this
insight, we adopted a holistic approach to evaluate breakage
rather than simply observing the behavior of one frame.

We had two graders evaluate each of our candidate URLs
for the policy variants in Section 4.1.2. The graders would
visit a candidate URL first with a permissive profile, the
Chrome default. This visit is our control visit for manual
analysis. It was followed by a visit to the same URL with
each of the site-keyed, page-length, and strict third-party stor-
age blocking profiles. Every visit, including the control visit,
was independent of all others, with a fresh browser profile
to ensure no browsing state carried over between tests/visits.
To keep our graders unbiased, subsequent visits to the candi-
date URL after the control visit were randomly coded so the
graders did not know which profile they were using.

In our holistic approach to evaluation, each grader would
visit the candidate URL with the control profile first. We in-
structed each grader to perform as many interactive actions
on the candidate site within one minute, which is the aver-
age dwelling time for a typical web-user on a webpage [34].
Activities depended on category of site: on news portals, our
graders would skim through, search for articles, watch embed-
ded videos, click on ads, or try to sign-up for newsletters; on
shopping sites, they would search for products, add products
to the shopping cart, and initiate a checkout; on product sites,
graders would either skim informational material, or try any
video streams available, etc. Subsequently, the graders would
visit the same URL with the 3 coded profiles, performing
similar actions as during the control visit, observing any devi-
ations from the control visit, and scoring their visit on a 1 to
3 scoring scale. The graders gave a coded profile visit a score
of 1 if the visit did not have any perceptible deviations from
the control; 2 if there were some deviations from the control
visit, but this did not hinder their visiting experience or the
tasks the graders attempted on the site; and 3 if the visit had
significant deviations from the control, preventing the graders
from replicating their control visit activities.

Given the highly subjective nature of the evaluation scheme,
we carefully assess grader agreement. Our graders eval-
uated the candidate URLs independently, unaware of the
other grader’s scores. In our evaluation, our graders had
a high agreement percentage ( 95.33%). We also com-
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Figure 3: Crawl success rate varied modestly across policies
but was always reasonably high.

puted the Cohen’s Kappa inter-rater reliability statistic [27]
as 0.69, showing statistically substantial agreement between
our graders [36]. We present the results of our manual evalua-
tion in Section 5.5.

5 Results

Our experimental results show that page-length storage com-
bines best-case stateful tracking protection with near-best-
case site compatibility.

5.1 Crawl Statistics
Our stateful web crawls ran from September 12-16 on a single
Linux virtual machine (40 VCPUs, 100GiB RAM).Combined,
the crawls visited 27,352 total pages using 8 user profiles and
produced 280,219 PageGraph files (405 GB).

Error rates were acceptable (Figure 3) if somewhat am-
plified by PageGraph internal consistency assertion failures.
PageGraph’s instrumentation is expansive and tracks complex
interactions between JavaScript execution, DOM manipula-
tion, and network traffic. Whenever unexpected corner cases
(or bugs) prevent it from establishing unambiguous context for
an event or activity, PageGraph logs the issue and terminates
the browser rather than recording unreliable data.

5.2 Privacy: Cross-Site Tracking Potential
Page-length storage eliminates stateful cross-site tracking as
effectively as does strict third-party storage blocking. See
Figure 4. The cumulative sum curves show the aggregate
counts of sites across which third-parties could track users un-
der different policies, calculated using the tracking-potential
heuristics described in Section 4.2.2. Page-length, site-keyed,
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Figure 4: Of our tested policies, all but permissive essentially
eliminated stateful cross-site tracking potential.

and strict third-party storage blocking policies are roughly
equal at preventing stateful cross-site tracking. This result is
logical and unsurprising: if third-party storage is not available
(or is partitioned by first-party site, or is strictly ephemeral), it
cannot be used to pass identifying state across site boundaries.

5.3 Privacy: Cross-Time Tracking Potential

Page-length storage also eliminates stateful cross-time track-
ing as effectively as does full third-party storage blocking,
which is a significant improvement over site-keyed storage.
See Figure 5. These curves show the cumulative sums of third-
parties which could longitudinally track return visitors across
the Tranco 1k sites, as described in Section 4.2.2. Unsurpris-
ingly, permissive policy allows the most cross-time tracking;
its strong cross-site tracking ability implies cross-time track-
ing ability. Persistent third-party storage, even if partitioned
by first-party site context, is still accessible on repeat visits,
allowing cross-time tracking. Thus, page-length and strict
third-party storage blocking policies equally provide stronger
cross-time tracking protection than site-keyed policy can.

5.4 Compatibility: Quantitative Assessment

Page-length storage produces page behaviors much closer
to the permissive policy baseline than does full third-party
storage blocking, as shown in Figure 6. These curves show
cumulative sums of similarity scores between one of our per-
missive crawl profiles and all other profiles, normalized to
show 1.0 as the maximum possible score (perfect similarity
on all instances). The curve showing the similarity scores
between the two permissive profiles provides a baseline (i.e.,
the best scores observed). Note the high consistency between
all pairs of same-policy profiles. While even the baseline falls
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Figure 5: Our page-length policy significantly outperforms
both permissive and site-keyed policies at reducing cross-time
tracking potential.

short of perfect similarity, there is a clear signal in the group-
ing of policies. The strict third-party storage blocking policies
produced the curves farthest from the baseline, as expected,
well isolated from all the other policies. The non-blocking
policies (site-keyed and page-length) both produced curves
much closer to the baseline than to strict third-party storage
blocking. The stark separation of curves strongly suggests
that the non-blocking policies induce significantly less overall
deviation from “normal” behavior (and thus less breakage)
than does strict third-party storage blocking.

5.5 Compatibility: Qualitative Assessment

As described in Section 4.2.4, we had two graders indepen-
dently perform manual evaluation on our set of 50 candidate
URLs for each of the three profiles: site-keyed, page-length,
and strict third-party storage blocking to manually assess
each policy’s potential for breaking sites. The graders inde-
pendently evaluated each candidate site for each of the three
profiles to find any deviations from our control profile, per-
missive, the Chrome default. The graders gave each visit a
score on a scale of 1 to 3, as detailed in Section 4.2.4. We
conservatively considered deviation from the control visit as
a form of breakage, resulting in a score of greater than 1. We
summarize the instances of graded breakage for each pro-
file in Table 1. Grader notes on several reported breakages
for page-length and site-keyed suggest that at least some of
those deviations involved render process crashes rather than
actual content breakage, possibly due to obscure bugs in those
prototypes.

Considering the 5 breakages observed for the strict third-
party storage blocking profile, the page-length profile either
scored similar (2 cases) or improved (3 cases) in terms of raw
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Figure 6: Our page-length policy produces page behaviors
within third-party frames much closer to the permissive base-
line than does the breakage-prone strict third-party storage
blocking policy.

Profile Pages
Broken

% Broken
(n=50)

Site-keyed 4 8%
Page-length 2 4%
Third-party blocking 5 10%

Table 1: Candidate URL breakage as assesses by holistic
(whole-page) manual grading

grader scores. In contrast to the site-keyed profile (4 break-
ages), the page-length profile again had either scored equal (2
cases) or better (2 cases). There were no cases where there
was a breakage for the page-length profile with worse score
compared to either of the strict third-party storage blocking
or the site-keyed profiles. We concluded that the page-length
profile performed reliably better than the strict third-party stor-
age blocking profile, and that it performed as well or better
than the site-keyed profiles. The observed rate of breakage for
strict third-party storage blocking (10%) appears reasonable,
and the roughly 2-to-1 advantage of page-length storage over
strict third-party storage blocking observed in manual testing
parallels a similar advantage in mean cumulative similarity
score observed in quantitative analysis (Section 5.4).

6 Discussion

6.1 Limitations

The principal design limitation of page-length storage is the
fact that some useful third-party webcomponents may sim-
ply require persistent, non-partitioned storage. We suspect
that persistent storage for embedded third-party content is
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more a matter of user convenience than essential functionality
(e.g., customizing an embedded video player when the user is
logged into the third-party site hosting the video). In any case,
page-length storage can and should be augmented in produc-
tion with the requestStorageAccess API to allow the user
to opt-in to persistent storage for specific third-parties, either
universally or on a specific first-party.

Our quantitative assessments of tracking and compatibility
are subject to the limitations and risks of automated web
crawls. While the scale of our crawl is modest, we believe the
Tranco 1k provides a realistic sample of popular, mainstream
web content and thus meets our evaluation needs. Spidering
3 links deep past landing pages likewise provides reasonable
sampling of site content without exhausting our time and
space budget, as PageGraph can generate large volumes of
data per page. All our crawlers were stateful and non-headless,
giving them a fair chance at evading the most trivial forms of
bot detection. More sophisticated bot detection depending on
“human” interactions with page content should treat all profiles
identically (as bots; we performed no interaction simulations).
We thus believe that whatever impact bot detection had on
our crawlers, it would have affected all our profiles similarly
and not significantly skewed our results.

6.2 Next Steps

Page-length storage can be further, better evaluated by real
users by deploying it first to browsers serving privacy-
conscious audiences. Production implementations will be
somewhat more complex than our prototype (to address per-
formance and maintainability concerns) but should require
only modest investment by browser vendors. Production im-
plementations should use the requestStorageAccess API
to allow user opt-in to useful third-party storage access.
Vendors could then deploy page-length storage to privacy-
conscious users already blocking third-party storage and ob-
serve the impact on their site breakage reports.

Ultimately, page-length storage can be standardized to pro-
vide a near-best-of-both-worlds solution to the problem of per-
sistent third-party storage abuse. Legacy content that assumes
third-party storage access can be largely accommodated to
minimize site breakage, without privacy loss. Modernized
content can use the requestStorageAccess API to bypass
page-length storage with user consent and gain controlled ac-
cess to persistent third-party storage. The user wins: content
that really needs third-party storage access to provide tangible
benefit to the user can do so with the user’s explicit permis-
sion, but the risk of permission denial and user alienation will
motivate publishers of content providing less compelling user
benefit (e.g., advertisers and trackers) to make do with less
intrusive technologies.

7 Related Work

Stateful User Tracking. Storage-based user tracking, usually
called “stateful” tracking and traditionally involving cookies,
has been extensively studied. Mayer and Mitchell’s seminal
third-party web tracking study covered both stateful and state-
less techniques and introduced the influential FourthParty web
measurement framework [35]. A contemporary stateful track-
ing measurement work by Roesner et al. defined alternate
terms “explicit” and “inferred” for stateful and stateless tech-
niques, respectively, while measuring stateful tracking exclu-
sively [45]. Acar et al.’s classic, large-scale user tracking mea-
surement study emphasized stateful tracking and hinted at the
nascent problem of cookie syncing [17]. A large-scale evalu-
ation of stateful third-party tracking by Li et al. focused on
cookies, the most prevalent form observed, and used machine-
learning to identify third-party cookie tracking on 46% of
the Alexa 10k [33]. Engelhardt and Narayanan’s extremely
large-scale user tracking measurement study included both
stateful and stateless techniques, covered the entire Alexa
Top Million sites, and introduced the widely used OpenWPM
web measurement framework [22]. Yang and Yue recently ex-
tended classic tracking measurement methodologies to mobile
web clients and reported distinctive but analogous groups of
tracking domains compared to traditional desktop web track-
ing [50]. Despite the increasing sophistication of web track-
ing and countermeasure technologies, Fouad et al.’s recent
exploration of obscure pixel-trackers showed classic third-
party cookie tracking to still be effective and prevalent in
the wild [24]. Zimmeck et al. even found traditional state-
ful tracking techniques to provide usable building blocks
for cross-device tracking via linking together independent
tracking sessions from different devices [52], a phenomenon
conceptually similar to cookie syncing.
Cookie Syncing & Other State Transfers. Third-parties can
collude to share stored user tracking identifiers and expand
their tracking scope via cookie syncing. Olejnik et al. per-
formed the first major measurement of cookie syncing in the
wild, reporting that up to 27% of a user’s browsing history
could be leaked via cookie syncing [39]. Falahrastegar et al.
measured distinctive personal identifiers and entities sharing
them across the web, focusing on the groups engaged in shar-
ing and how user behavior affects sharing [23]. Our procedure
for selecting potentially identifying cookie flows shares some
similarities with their selection of personal identifiers. Pa-
padopoulos et al. identified cookie syncing as a major source
of hidden costs to users imposed by digital advertising on-
line [42]. Subsequent work documented the state of the art
in cookie syncing, reinforcing the importance of third-party
cookies to contemporary tracking [41].

Tracking identifiers can be passed across first-party do-
mains using means other than stored state. Stopczynski et
al. provide evidence that modern defenses like Safari ITP
are effective but are being actively attacked and evaded, e.g.,
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via abuse of HTTP redirects passing identifiers in modified
URLs [49]. For the moment, these attacks appear to constitute
efforts to reestablish traditional cookie tracking disrupted by
ITP rather than the emergence of a new tracking paradigm.

Browser Fingerprinting. A major category of web privacy
research for the past decade has involved stateless tracking
via fingerprinting. The Panoptoclick project’s seminal report
on browser fingerprintability [21] popularized the threat as
a potential tracking vector and launched a flurry of related
research. Acar et al. measured fingerprinting in the wild and
found it much more prevalent than commonly estimated at the
time [18]. Olejnik et al. dissected the infamous and quickly
deprecated Battery Status API as a particularly egregious
source of fingerprinting entropy [38]. Laperdrix et al. identi-
fied new fingerprinting vectors from emerging desktop and
mobile web technologies, but also identified potential trends
toward reduced fingerprinting threats [32]. The current threat
status of fingerprinting remains ambiguous: Gomez et al. re-
ported findings that Panoptoclick-style identification has been
largely defeated in practice [25], but Pugliese et al. later pre-
sented counter-arguments from data that such fingerprinting
is still an effective threat [44].

Content Blocking. Published countermeasures against user
tracking can be broadly categorized as either blocking
tracking-related content (e.g., ads) before they enter the
browser or changing browser implementations to mitigate
unwanted effects from such content. As most ad and tracker
blocking currently depends by filter lists, filter list improve-
ments and alternatives are a frequent research topic. Gugel-
mann et al. used large-scale traffic analysis (15k users on
a campus network) to train a machine classifier of privacy-
invasive tracking services, compared it to popular filter lists,
and presented it as a mechanism for updating these lists
faster and more effectively than the current crowd-sourced
model [26]. The PageGraph instrumentation system has
been used to demonstrate the effectiveness and efficiency
of ad blocking via machine-learning trained on page graph
data [29], to improve filter lists for non-English-speaking pop-
ulations [47], and to detect filter list evasions in the wild [20].
Hu et al. analyzed the interconnectedness (or “tangle factor”)
of first-party sites embedding the same third-party tracking
content using real-world browsing data from volunteers in
order to assess ad blocker effectiveness and to drive automatic
partitioning of first-party sites into isolated multi-account
containers [28].

Browser Policies & Mechanisms. page-length storage be-
longs to another category of tracking countermeasure re-
search, which focuses on evaluating and enhancing built-in
browser security policies. Hypothetical discussions of block-
ing third-party storage, and of potential collusion by third-
parties to work around it, predate the modern era of track-
ing research [30]. Bauer et al. demonstrated practical formal
browser security using a taint-analysis and data-flow policy

enforcement engine build into Chrome 32; the system could
be used to enforce classic browser policies (SOP, CSP) or
prototype new ones [19]. Pan et al. prototyped an full replace-
ment of the traditional SOP with a hierarchy of nested security
principals, each layer able only to increase, not decrease, re-
strictions on tracking [40]. Fingerprinting countermeasures
that involve injecting randomness into known or suspected
entropy sources to disrupt stateless tracking include Privarica-
tor [37] and FPRandom [31]. Yu et al. described an elegantly
generalized approach to tracking prevention at the data flow
level using k-Anonymity, deployed in the privacy-focused
Cliqz browser [51]. Our approach to quantifying tracking
potential is loosely inspired by this data flow approach to
defining privacy.

8 Conclusion

Our work addresses the lose-lose dilemma presented to
browser developers by third-party storage: maintain the sta-
tus quo and enable mass user tracking, or block third-party
storage and break a significant amount of the useful web.
Practical experience suggested it was rare for third-party con-
tent to actually need persistent storage to provide desirable
functionality to the user. We exploited this insight to design
page-length storage, and the results show that a win-win (or
at least a win-nearly-always-win) solution is possible to the
old lose-lose dilemma. We share our contributions with the
browser research and development community: the concep-
tual design of page-length storage, a novel solution to the
third-party state management problem in browsers; our met-
rics for comparing the privacy and compatibility impact of
storage policy changes; our working prototype, made avail-
able as open source patches to Chromium, along with our
crawl dataset.
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